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Results from an earlier experimental assessment of fractal scale similarity in one-
dimensional spatial and temporal intersections in turbulent flows are here extended to
two- and three-dimensional spatial intersections. Over 25000 two-dimensional (256#)
intersections and nearly 40 three-dimensional (256$) intersections, collectively
representing more than 2±3 billion data points, were analysed using objective statistical
methods to determine which intersections were as fractal as stochastically scale-similar
fractal gauge sets having the same record length. Results for the geometry of Sc( 1
scalar isosurfaces and the scalar dissipation support span the range of lengthscales
between the scalar and viscous diffusion scales λ

D
and λν. The present study finds clear

evidence for stochastic fractal scale similarity in the dissipation support. With
increasing intersection dimension n, the data show a decrease in the fraction of
intersections satisfying the criteria for fractal scale similarity, consistent with the
presence of localized non-fractal inclusions. Local scale similarity analyses on three-
dimensional (64$) intersections directly show such intermittent non-fractal inclusions
with characteristic lengthscale comparable to λν. These inclusions lead to failure of the
relation among codimensions D

n
3D®(3®n) when applied to simple average

dimensions, which has formed the basis for most previous assessments of fractal scale-
similarity. Unlike the dissipation support geometry, scalar isosurface geometries from
the same data were found not to be as fractal as fractional Brownian motion gauge sets
over the range of scales examined.

1. Introduction

One of the central objectives of turbulence theory involves identifying the proper
similarity rules that characterize scalar and velocity fluctuations over lengthscales and
timescales sufficiently removed from external influences for the natural scale-
equilibrium to be established. The first partially successful attempt at this was
Kolmogorov’s (1941) similarity hypothesis, which still forms the cornerstone of
turbulence theory. Kolmogorov’s (1962) modification based on intermittency
corrections to his original ideas provided the next major advance in understanding
turbulence-similarity scaling. Roughly twenty years later, concepts from nonlinear
dynamics provided a potential framework for refined similarity hypotheses of
turbulent flows. These have led to modern developments in the subject that focus
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largely on fractal and multifractal scaling models of various aspects of turbulence fields.
However, direct evidence for the applicability of this broad class of scale similarity
hypotheses to turbulent flows has been limited, and has led to mixed conclusions
regarding the validity of modelling the equilibrium scale similarity using these
concepts. The present study is intended to provide an objective assessment of the
applicability, over at least a limited range of scales, of fractal scale similarity in
turbulent flows.

Previous studies (Sreenivasan & Prasad 1989; Prasad & Sreenivasan 1990a ;
Sreenivasan 1991; Lane-Serff 1993) have investigated fractal properties of higher-
dimensional intersections with the scalar isosurface field. These have found fractal
scale similarity to be present in two-dimensional spatial intersections with scalar
isosurface fields produced by turbulent flows, however, considerable variation in the
dimension was seen with different isosurface threshold values. Further work by Prasad
& Sreenivasan (1990b) extended their analysis to three spatial dimensions and
produced results consistent with their previous two-dimensional analyses. Investi-
gations of the possible fractal scale similarity of two- and three-dimensional
intersections with the scalar energy dissipation support are limited to the work of
Prasad, Meneveau & Sreenivasan (1988), Sreenivasan & Prasad (1989), Sreenivasan
(1991), and Prasad & Sreenivasan (1990b). The results of these studies all found the
scalar dissipation field to exhibit multifractal characteristics and thus would be
consistent with a fractal scalar dissipation support.

Much of this existing experimental evidence was summarized in an earlier companion
paper (Frederiksen, Dahm & Dowling 1996), hereinafter referred to as Part 1. That
paper presented independent experimental assessments for the applicability of uniform
fractal scale similarity to certain geometric properties of one-dimensional intersections
with Sc( 1 conserved scalar fields ζ(x, t) in turbulent flows. That study introduced
objective statistical methods for determining whether or not a given data record with
finite length was ‘as fractal as a known fractal gauge set having the same record
length’. Criteria were established for comparisons with deterministically self-similar
fractal gauge sets, represented by the class of irregular Cantor sets, as well as with
stochastically self-similar fractals characterized by the fractional Brownian motion
(fBm) set. Analyses were conducted on one-dimensional spatial and temporal
intersections through fully-resolved three- and four-dimensional data spanning from
the scalar diffusion scales (λ

D
,T

D
) across the viscous diffusion scales (λν,Tν) to the outer

scales (δ,Tδ).
The results in Part 1 from over two million such one-dimensional intersections with

isosurfaces in the conserved scalar field ζ(x, t) at scales between (λ
D
,T

D
) and (λν,Tν) did

not show the required approach to constant dimension indicative of strict scale-
similarity, either deterministic or stochastic. Over this inner range of scales, the scalar
isosurface geometries displayed a scaling that at best approximated the similarity in
fBm sets with dimension D

"
¯ 0±48³0±12 for all isoscalar values. However, at scales

between the viscous and outer scales, no uniform scale similarity consistent with either
deterministically or stochastically self-similar fractals was found in scalar field
isosurfaces.

In contrast, the spatio-temporal support geometry on which the scalar dissipation
field ¡ζ[¡ζ(x, t) is concentrated was found to display uniform scale similarity
comparable with stochastically self-similar fBm sets having dimension D

"
¯ 0±66³0±05

over the entire range from the inner scales (λ
D
,T

D
) to the outer scales (δ,Tδ). This

support dimension was found to decrease with increasing dissipation threshold values,
as a direct consequence of the decreasingly space-filling nature of the dissipation field
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with increasing threshold. This latter issue is itself closely connected with possible
multifractal scaling in the dissipation field, and is examined in a Part 3 companion
paper (Frederiksen, Dahm & Dowling 1997). The difference in applicability of fractal
scale similarity to the geometry of scalar isosurfaces and the dissipation support was
attributed to the differing retention of information in the scalar and dissipation fields
that results from their respective underlying dynamics.

Part 1 pointed to several possible reasons for the different finding in that study and
results from other studies concerning the applicability of fractal scale similarity to
scalar isosurfaces. These included the anticipated break in similarity across the viscous
diffusion scales (λν,Tν), as well as the potential influence of inner and outer cut-offs in
the range of scales examined. However, these were discounted by the fact that the
scalar dissipation support from precisely the same data showed clear applicability of
fractal scaling over precisely the same range of scales. It was concluded that the
findings differed from preious results as a result of the objective statistical criteria used
to determine if an ensemble of intersections displayed scale similarity consistent with
fractal gauge sets having the same record length.

The present study extends the results from Part 1 to higher-dimensional intersections
to clarify the geometric scaling properties of isoscalar surfaces and the dissipation
support in Sc( 1 conserved scalar fields in turbulent flows. Such higher-dimensional
intersections permit more precise assessments of scale similarity owing to the
comparatively greater information contained in the two-dimensional (256#) and three-
dimensional (256$) experimental data sets used here than in the 256-point and 4096-
point one-dimensional intersections examined in Part 1. More importantly, the present
higher-dimensional assessments allow access to the local scale similarity parameter
Q(x, t) and the local fractal dimension D(x, t) throughout each data volume. As will
become evident below, these directly show the presence of non-fractal inclusions in an
otherwise fractal background structure. Equally important and closely connected with
this, such higher-dimensional analyses do not rely on the method of intersections (e.g.
Feder 1988) relating codimensions D

n
in lower n-dimensional intersections through

uniform fractal sets to the true fractal dimension D as

D3D
n
­(3®n),

which has formed the basis for most previous assessments of fractal dimension. In fact
it will be seen below that significant departures from this relation arise as a
consequence of the non-fractal inclusions mentioned above.

Section 2 below summarizes the experimental data used in the present study. Section
3 briefly reviews the statistical criteria developed in Part 1 and discusses their extension
to higher dimensions in the present study. Following this, §4 gives calibration results
for two-dimensional spatial intersections through stochastically self-similar fBm sets
and, based on these, presents assessments of scale similarity in two-dimensional
intersections through conserved scalar isosurfaces and scalar dissipation support sets.
Analogous calibrations and results for three-dimensional spatial intersections are given
in §5. Section 6 examines local scale similarity throughout these three-dimensional
spatial data volumes, and presents results showing non-fractal inclusions in these data
and characterizes their size and their effect on the applicability of fractal scale
similarity. A collective discussion of these results together with those from Part 1 is
given in §7, and conclusions are drawn as to the applicability of fractal scale similarity
in turbulent flows.
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F 1. An example of a two-dimensional (256#) spatial data plane, showing (a) the scalar field
ζ(x, t) in a typical data plane, and (b) the scalar energy dissipation rate field χ(x, t)3D¡ζ[¡ζ(x, t)
in the same plane.
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F 2. Another example of a typical two-dimensional (256#) spatial data plane, showing (a) the
scalar field ζ(x, t) in a typical data plane, and (b) the scalar energy dissipation rate field
χ(x, t)3D¡ζ[¡ζ(x, t) in the same plane.
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F 3. An example of a fully resolved three-dimensional (256$) spatial data volume, showing
(a) the scalar field ζ(x, t) in a typical volume, and (b) the scalar energy dissipation rate field
χ(x, t)3D¡ζ[¡ζ(x, t) in the same data volume.
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F 4. Another example of a typical fully resolved three-dimensional (256$) spatial data volume,
showing (a) the scalar field ζ(x, t) in a typical volume, and (b) the scalar energy dissipation rate field
χ(x, t)3D¡ζ[¡ζ(x, t) in the same data volume.

2. Data summary

The present study was based on the same three-dimensional (256$) spatial data
volumes as were used in analysing one-dimensional spatial intersections in Part 1. The
measurement technique developed to obtain these data is described in detail by Dahm,



94 R. D. Frederiksen, W. J. A. Dahm and D. R. Dowling

Spatial resolution Temporal resolution

λ
D

λν ∆x,∆y ∆z λ
D
}u λν}u ∆t ∆T

Data set Reδ Reλ (µm) (µm) (µm) (µm) (ms) (ms) (ms) (ms)

R0806 5000 52 209 9520 107 100 62 2820 8.87 2270
R0703 3700 45 257 11700 109 120 103 4690 8.87 2270
R0304 2900 40 309 14100 110 88 158 7200 8.87 2270

T 1. Spatial and temporal resolution characteristics.

Southerland & Buch (1991) and Southerland & Dahm (1994, 1996), and a summary
of the resulting data characteristics was given in §2 of Part 1. Briefly, the data are from
laser induced fluorescence measurements of Sc( 1 conserved scalar mixing in the self-
similar far field of an axisymmetric turbulent jet in water. The concentration field
ζ(x, t) of a laser fluorescent dye carried by the jet fluid was measured repeatedly in
time at up to 256$ points within a small three-dimensional spatial volume located
235 diameters (1.15 m) downstream of the jet exit and 26 diameters (13 cm) off the jet
centreline. A highly collimated laser beam was swept in a raster fashion through this
volume, and the resulting laser induced fluorescence from dye-containing fluid was
imaged onto a high-speed, planar, 256¬256 element, photodiode array. The array
output was serially acquired at 8-bits true digital depth and continuously written in real
time to a 3.1 GB high-speed parallel-transfer disk bank capable of accommodating
more than 50000 such 256# data planes. The resulting measured fluorescence intensity
field was converted to the true dye concentration as described in Southerland & Dahm
(1994, 1996).

Examples of the scalar field in such individual (256#) spatial data planes are shown
in figures 1 and 2. A succession of 256 such 256# spatial data planes comprises each of
the present three-dimensional (256$) spatial data volumes of the type shown in figures
3 and 4. Each four-dimensional data set consists of a temporal sequence of up to 200
such individual (256$) spatial data volumes, giving the scalar field values ζ(x, t) at over
3 billion points in space and time. The resulting spatial and temporal resolution can be
determined by noting that the local outer scale δ(x)E 0.44x and centreline velocity
u(x)E 7.2(J}ρ)"/#x−", with J the jet source momentum flux and ρ the ambient fluid
density. For example, as given in table 1, at a typical outer scale Reynolds number
Reδ 3 (uδ}ν)E 3700 and with the Schmidt number of 2075, the local strain-limited
molecular diffusion lengthscale estimate is λ

D
E 257 µm and its local advection

timescale estimate is T
D

3λ
D
}uE 103 ms. For comparison, the in-plane spatial

resolution was ∆(x, y)E 109 µm. The (1}e) laser beam thickness was measured
as 181 µm. Deconvolution of the scalar field measurements among adjacent planes
increases the effective spatial resolution in the z-direction to the interplane separation
∆zE 120 µm. These values show that both the characteristic scale of the pixel image
volume (∆x∆y∆z)"/$ and its maximum dimension are less than 0.5λ

D
. Similarly, the

temporal separation between successive data planes was ∆t¯ 8.9 ms. Comparing
with the diffusion scale advection time of 103 ms verifies that the present measurements
resolve essentially all of the fine scale structure of the local turbulent mixing process.

In Kolmogorov variables, the local strain-limited molecular diffusion lengthscale
λ
D

¯λν Sc−"/#, where λν is the local strain-limited viscous diffusion scale, and λν E 5.9λ
K

(Southerland & Dahm 1994, 1996) with the Kolmogorov scale λ
K

3 (ν$}ε)"/%. Thus the
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scalar diffusion lengthscale λ
D

¯ 0.13λ
K
, and the scalar diffusion timescale λ

D
}u¯

0.009τ
K
, where τ

K
3 (ν}ε)"/# is the Kolmogorov timescale. Even in the worst case, the

interplane time of 0.009 s is less than 0.091λ
D
}u and thus is entirely negligible relative

to τ
K
. Consequently, the data acquisition rate is sufficient to effectively freeze the scalar

field, and to entirely freeze the underlying velocity field. The resulting spatio-temporal
resolution allows accurate differentiation of the measured conserved scalar field in the
three spatial dimensions to determine all three components of the true local
instantaneous scalar gradient vector field ¡ζ(x, t) throughout these three-dimensional
data. This in turn permits determination of the true scalar energy dissipation rate field
¡ζ[¡ζ(x, t), as shown in figures 1–4, and thus assessment of the geometric scaling
properties of the compact support on which this field is concentrated in turbulent shear
flows.

As noted in Part 1, the imaged region in the turbulent scalar field typically spans less
than "

"&
of the local outer scale δ, and is comparable to the local viscous diffusion scale

λν of the flow. The structure of velocity and scalar fields in turbulent shear flows at
scales near and below λν appears to be statistically universal even for the present
moderate Reynolds numbers, as evidenced by Jime!nez et al. (1993). The estimated
Taylor scale Reynolds numbers for the present data are Reλ E 45, well within the range
of values over which the DNS results of Jime!nez et al. showed Reynolds-number-
independent collapse on inner variables of the fine-scale vortical structures of the flow.
Moreover, high-wavenumber spatial scalar spectra from these same data (Southerland,
Dahm & Dowling 1995) show the k−" scaling predicted by Batchelor for large Sc
mixing in turbulent flows. As a result, although the present measurements are from
2900%Reδ % 5000 turbulent jets, the geometric scaling properties of the fine scales
contained in them are believed to be largely representative of the scaling properties at
the inner scales of all turbulent shear flows.

3. Fractal assessment criteria

This study adopts the statistical box counting algorithm developed in Part 1, but
extends this to two- and three-dimensional records. It also uses the same χ# statistical
goodness-of-fit parameter Q in (4) of Part 1 (see Bevington & Robinson 1992; Press et
al. 1992) to discern if any given two- or three-dimensional record is ‘as fractal as any
given fractal gauge set having the same record size ’ on the basis of threshold Q values
determined by applying the box counting algorithm to a set of calibration cases.
Higher-dimensional fractional Brownian motion sets are used here as gauge sets, based
on the results found from one-dimensional intersections in Part 1. Comparisons with
random percolation sets, which in Part 1 served as negative gauge sets displaying no
scale similarity, play a much smaller role in the present study. Such random
constructions in their present higher-dimensional forms were found to produce sets
that were manifestly different from any of the experimental records examined. Results
in Part 1 also verified that these fractal assessment criteria were effectively insensitive
to noise even at levels many times higher than in the present data.

A given record is determined either to be or not to be as fractal as an fBm set having
the same average dimension and record size on the basis of its local fractal dimension
D(ε) given in (2) of Part 1, and from its ©D(ε)ª and Q coordinates, in precisely the same
manner as described in Part 1. (The fractal assessment criterion must depend on D
since the scaling quality varies with dimension, as has also been noted by Sreenivasan
& Juneja 1993.) In the two-dimensional results that follow in §4 and the three-
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dimensional results in §5, calibrations for each of these criteria are first presented for
stochastically self-similar fBm sets, and then corresponding results from analyses of
experimental data records are compared against these.

It should be noted, however, that extension of these fractal scale-similarity criteria
from Part 1 becomes computationally time consuming as the intersection dimension n
is increased. Construction of higher-dimensional fBm gauge sets with record size N in
each of n dimensions involves combining n one-dimensional fBm sets of record length
N, yielding an Nn increase in the number of summation and level-crossing construction
steps. Similarly, in applying the box-counting technique itself to these gauge sets (and
to the data as well), the number of points that must be interrogated at each scale of the
analysis increases as Nn. This increase in the time needed for creation and analysis of
each realization of every gauge set required reducing the total number of sets used for
calibration from over 100000 for the one-dimensional 256-point assessments in Part 1
to just 200 for the three-dimensional 256$ assessments in the present study. Even with
this reduction, the total time required for each of the present three-dimensional
calibrations is more than 130 times that for each of the one-dimensional calibrations
in Part 1.

The same scaling with intersection dimension also necessitated reducing the number
of data records that could be analysed from several million (256-point) intersections for
the one-dimensional assessments to just 25000 (256#-point) intersections in the present
two-dimensional assessments, and to just 40 (256$-point) intersections in the present
three-dimensional assessments. The smaller number of independent intersections
would increase statistical uncertainty levels, but this was more than offset by the
attendant increase in certainty with which any given higher-dimensional set could be
judged to be fractal or non-fractal. The results below are from scale-similarity
assessments that collectively represent over 2.3 billion points from the three cases listed
in table 1, with the data from each case typically spanning 10–25 inner timescales λν}u
while still permitting time variations on the order of the inner scale to be seen in
volume-to-volume comparisons.

4. Two-dimensional intersections

This section presents results from two-dimensional intersections through isosurface
sets from conserved scalar fields ζ(x, t) of the type in figures 1(a) and 2(a), and through
support sets for scalar energy dissipation rate field ¡ζ[¡ζ(x, t) of the type in figures
1(b) and 2(b), for each of the cases listed in table 1. Criteria based on the scale
similarity displayed by stochastically self-similar two-dimensional fBm sets, cons-
tructed from superpositions of lower-dimensional fBm sets, are developed in §4.1.
Results for the geometric scaling properties of the dissipation support are given in §4.2,
and for the scaling properties of scalar isosurfaces in §4.3.

4.1. Two-dimensional calibrations

Two-dimensional calibrations were performed with fBm gauge sets having dimensions
1!D! 2 in increments of ∆D¯ 0.1. As an example, the D(ε) signatures of 1000
individual realizations of two-dimensional (256#) fBm sets, each having D3 1.5, are
presented in figure 5(a). As was seen in Part 1, as the box size (ε}L)U 0 the D(ε) results
asymptote toward constant values around the true dimension. Notice that the D(ε)
results in figure 5(a) show much faster convergence to the true dimension than did the
corresponding one-dimensional fBm sets in figure 5(b) of Part 1. This is to be expected,
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since the scaling information contained in each two-dimensional (256#) record is much
greater than in the corresponding one-dimensional (256-point) records of Part 1.

For any two-dimensional record composed of p¬p equally spaced points, the
smallest accessible box size is (ε}L)¯ 1}p. Thus for the present 256# two-dimensional
spatial data planes, the D(ε) results are confined to 2%®log

#
(ε}L)% 7. As in Part 1,

this accessible range of scales is separated into two regions (termed Regions 1 and 2),
the former dominated by the decrease in D(ε) at relatively large box sizes, and the latter
in which an asymptotic approach to constant D(ε) becomes evident. The standard
deviation σ in D(ε) over Region 2 and the average value ©D(ε)ª over the same range
of scales provide a means for assessing if a given set displays scale similarity
comparable to an fBm set having the same average dimension over the same range of
scales. Results obtained from such calibrations for fBm sets covering the range of true
dimensions from 1!D! 2 are given in table 2. Note that, in contrast to the one-
dimensional gauge sets considered in Part 1, here σ does not vary strongly with ©D(ε)ª.

Each individual realization in figure 5(a) produces a single Q value and an average
D(ε) value over Region 2. Collecting joint ©Dª and Q statistics over all realizations and
all dimensions produces the cumulative distributions in figure 5(b). As in Part 1, the
contours denote cumulative probability boundaries, with 50% of the fBm sets
producing ©Dª and Q values to the right-hand side of the solid 0.5 contour, 95%
producing values to the right-hand side of the solid 0.05 contour, etc. Also shown are
the corresponding contours for random percolation sets having the same relative cover,
where 99% of the random sets produced ©Dª and Q values to the left-hand side of the
dashed 0.99 contour, etc. Note that in these two-dimensional calibrations the random
and fractal contours cross much closer to the limiting D value (here 2) than was the case
in the one-dimensional calibrations in figure 5(b) of Part 1. In effect, it is much less
likely that random percolation will produce a set that displays fractal scale similarity
in two dimensions than was the case in one dimension. Except at these extremely large
values, there is a clear separation between the Q values obtained from fractal and
random sets, allowing an objective statistical determination of the probability that a
given two-dimensional (256#) data record displays scale similarity ‘as fractal as an fBm
set having the same record length and dimension’, or ‘as random as a percolation set
having the same record length and dimension’.

4.2. Scalar dissipation support intersections

The scalar dissipation support consists here of all points where the scalar dissipation
field ¡ζ[¡ζ(x, t) is above the mean dissipation value. Effects of varying this dissipation
threshold value were examined in Part 1. Figures 6 and 7 each present results from
analyses of the scale similarity properties of the dissipation support for cases R0703
and R0304 in table 3. Each of these figures represents ensemble statistics collected from
nearly 10000 individual two-dimensional intersections of the type in figures 1(b) and
2(b). These intersections are taken through thirteen different 256$ spatial data volumes
of the type in figures 3(b) and 4(b), spanning the range of scales between the scalar
diffusion scale λ

D
and the viscous diffusion scale λν. The typically thirteen spatial data

volumes analysed in each case were spaced in time by about one to two viscous
diffusion timescales λν}u, depending on the case analysed (see table 3). This temporal
separation ensures marginal statistical dependence between successive volumes
analysed, allowing time variations to be identified on a volume-to-volume basis but
still yielding a statistically meaningful sample among the volumes analysed. Moreover,
it will be seen below that the scale-similarity properties of these data show significant
variations among the three cases considered.
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F 5. D(ε) results from (a) fractional Brownian motion sets with D¯ 1.5 and (b) the
corresponding fractal criterion developed from analysis of many two-dimensional fractional
Brownian motion sets.

Figures 6(a) and 7(a) give the ensemble results for the dimension D
#
(ε) obtained

from these two-dimensional intersections for these two cases, and should be compared
with the corresponding stochastically scale-similar fBm results (albeit for D3 1.5) in
figure 5(a). It is immediately evident that the local dimension signature D

#
(ε) at

lengthscales ε between the viscous and scalar diffusion scales in these two-dimensional
intersections appears very different from that in figure 5(a). The standard deviations
σ¯ 0.144 and 0.138 in figures 6(a) and 7(a), respectively, are much larger than the
corresponding values in table 2 for fBm sets having the same average dimension and
record size. This can be contrasted with the corresponding results from one-
dimensional intersections by comparing figures 8(a), 10(a), and 18(a) of Part 1 with
their respective fBm counterparts in figures 5(b) and 15 of Part 1. The reasons for this
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F 6. (a) D(ε) and (b) joint Q and ©D(ε)ª signatures obtained from analysis of two-
dimensional intersections with the scalar energy dissipation support of data set R0703.

D ©Dª σ(©Dª)

1.1 1.165 0.040
1.2 1.240 0.042
1.3 1.319 0.041
1.4 1.408 0.039
1.5 1.500 0.039
1.6 1.604 0.043
1.7 1.718 0.045
1.8 1.841 0.039
1.9 1.945 0.020

T 2. The D statistics generated from analysis of 9000 two-dimensional fractional Brownian
motion sets with varying dimension.
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F 7. (a) D(ε) and (b) joint Q and ©D(ε)ª signatures obtained from analysis of two-
dimensional intersections with the scalar energy dissipation support of data set R0304.

apparent difference between one-dimensional and two-dimensional intersections will
become clearer in §6.1 below. Even at this stage, however, close inspection of Region
2 in the present figures 6(a) and 7(a) reveals that many intersections produce a
relatively good asymptotic approach to constant dimension with decreasing lengthscale
(ε}λν), but appear to show a relatively wide range of dimensions.

This latter point is more directly evident in the corresponding joint ©Dª and Q
statistics in figures 6(b) and 7(b) from these same two-dimensional intersections. These
should be compared with the corresponding contours for fBm sets over the entire range
of dimensions in figure 5(b). As indicated in table 3, 49±4% of the intersections in case
R0703 and 83.9% of the intersections in case R0304 produced ©Dª and Q values to
the right of the 90% contour for fBm sets, and thus were as fractal as 90% of fBm sets
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Two-dimensional results Three-dimensional results

χ support ζ isosurface χ support ζ isosurface

Data Fractal Fractal
volume t}(λν}u) (%) ©D

#
ª (%) ©D

#
ª log

"!
Q D

$
log

"!
Q D

$

R0806039 0.00 28.1 1.37 45.5 1.31 ®77.80 2.31 ®58.89 2.23
42 2.41 41.2 1.34 42.4 1.28 ®36.50 2.25 ®52.20 2.20
44 4.02 47.4 1.50 41.6 1.30 ®13.70 2.46 ®64.19 2.24
47 6.43 66.2 1.60 54.4 1.27 ®4.10 2.57 ®47.55 2.18
49 8.04 44.1 1.50 28.7 1.28 ®6.70 2.45 ®54.58 2.19
52 10.45 33.7 1.33 29.3 1.28 ®0.78 2.21 ®54.34 2.19
55 12.86 49.9 1.31 57.6 1.25 ®6.68 2.22 ®41.12 2.15
57 14.47 61.2 1.40 77.0 1.27 ®0.91 2.31 ®29.35 2.16
59 16.08 81.8 1.54 19.6 1.27 ®1.33 2.47 ®66.97 2.18
62 18.49 96.5 1.67 48.7 1.28 ®0.77 2.64 ®41.89 2.20
64 20.10 77.5 1.72 71.0 1.30 ®2.12 2.71 ®25.95 2.20
67 22.51 64.1 1.64 68.0 1.22 ®3.13 2.61 ®17.00 2.10
69 24.11 85.9 1.64 59.5 1.26 ®2.66 2.61 ®45.55 2.17

Average — 59.8 1.50 79.4 1.28 — 2.45 — 2.18

R0703034 0.00 91.5 1.56 56.6 1.27 ®0.70 2.51 ®52.54 2.19
37 1.45 71.5 1.60 27.3 1.27 ®3.62 2.57 ®74.25 2.18
39 2.42 28.4 1.54 49.0 1.26 ®7.76 2.51 ®68.54 2.17
42 3.87 18.5 1.35 22.7 1.34 ®50.70 2.30 ®88.78 2.28
44 4.84 11.2 1.50 18.0 1.35 ®16.30 2.46 ®51.13 2.28
47 6.29 24.8 1.44 15.3 1.35 ®27.80 2.38 ®81.74 2.30
49 7.26 27.4 1.46 16.5 1.34 ®18.20 2.40 ®84.16 2.28
52 8.71 66.4 1.60 13.7 1.30 ®3.78 2.57 ®97.75 2.23
54 9.68 91.3 1.68 20.5 1.31 ®1.31 2.66 ®91.59 2.24
57 11.13 62.0 1.46 41.0 1.26 ®2.14 2.42 ®37.59 2.17
59 12.10 37.1 1.31 73.4 1.22 ®3.62 2.18 ®5.95 2.10
62 13.55 63.1 1.35 30.5 1.22 ®2.81 2.27 ®9.20 2.08

Average — 49.4 1.49 32.1 1.29 — 2.44 — 2.21

R0304037 0.00 99.3 1.73 69.1 1.23 ®1.08 2.71 ®23.71 2.11
39 0.63 97.3 1.70 57.0 1.23 ®0.60 2.67 ®18.25 2.10
42 1.58 98.2 1.74 41.6 1.20 ®0.07 2.72 ®3.24 2.07
44 2.21 55.4 1.42 53.0 1.17 ®0.37 2.36 ®25.46 2.08
47 3.15 91.6 1.57 55.6 1.27 ®4.19 2.52 ®43.64 2.17
49 3.78 98.0 1.58 56.2 1.23 ®2.77 2.54 ®53.15 2.14
52 4.73 82.7 1.53 80.0 1.25 ®1.27 2.46 ®34.03 2.15
54 5.36 90.6 1.50 66.2 1.23 ®1.49 2.45 ®36.94 2.12
57 6.31 55.8 1.41 53.5 1.26 ®0.11 2.31 ®15.87 2.14
59 6.94 60.6 1.37 58.5 1.25 ®0.71 2.24 ®5.27 2.12
62 7.89 83.8 1.49 58.0 1.29 ®6.84 2.44 ®47.42 2.20
64 8.52 75.2 1.56 52.8 1.29 ®6.55 2.52 ®58.66 2.21
67 9.46 96.8 1.62 37.9 1.28 ®2.42 2.58 ®80.40 2.20

Average — 83.9 1.55 56.9 1.24 — 2.50 — 2.14

T 3. Results by data volume from two- and three-dimensional analyses of intersections with
the scalar dissipation support and scalar isosurface data.

having the same record size. These percentages should be compared with the
corresponding results from one-dimensional intersections, where 90% of records
having similar length were found to be as fractal as 99% of fBm sets (see table 5 of
Part 1; for the 90% contour used in the present study, 78% of one-dimensional
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F 8. (a) D(ε) and (b) joint Q and ©D(ε)ª signatures obtained from analysis of two-
dimensional intersections with the average scalar isosurface of data set R0703.

intersections in Part 1 were as fractal as fBm sets). Note that the different percentages
obtained for cases R0703 and R0304 appear consistent with the D

#
(ε) results in figures

6(a) and 7(a). Moreover, as can be seen in table 3, within the results obtained
individually for each of the volumes analysed in each case, there are instances of
consistent and rather large variations with time in the percentage of intersections found
to be as fractal as fBm sets. The reason for these variations will become clear in §6.1,
though even here the time variations in table 3 are potentially indicative of
intermittent non-fractal inclusions advecting through the measurement volume, which
interrupt scale similarity in intersections that pass through them.

As was also apparent in the D
#
(ε) results in figures 6(a) and 7(a), the joint ©Dª and

Q statistics in figures 6(b) and 7(b) show a relatively wide range of dimensions. The
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F 9. (a) D(ε) and (b) joint Q and ©D(ε)ª signatures obtained from analysis of two-
dimensional intersections with the average scalar isosurface of data set R0304.

overall average dimensions found for cases R0703 and R0304 in these figures are
D

#
¯ 1.49 and 1.55, respectively. These are lower than would be expected from the

method of intersections based on the D
"
¯ 0.66 result from one-dimensional

intersections in Part 1. However, figures 6(b) and 7(b) show that the average dimension
at each Q rises with increasing Q values (corresponding to increasingly fractal scale
similarity). It is only as log

"!
QU 0 that D

#
approaches the value 1.66 expected from the

D
"
¯ 0.66 result in Part 1 by the relation D

n
¯D®(3®n) among codimensions of

uniform fractal sets. The reasons for this apparent failure of the method of
intersections when applied to the overall average dimensions will become clear in §6.1,
where it will be seen that the presence of non-fractal inclusions fully reconciles the
present results with the corresponding one-dimensional results from Part 1.
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4.3. Scalar isosurface intersections

In this section, results analogous to those for the scalar dissipation support geometry
in §4.2 are presented to assess scale similarity in scalar isosurface geometries. Only
isosurfaces corresponding to the mean scalar value are examined here, since this choice
yields the greatest number of isosurface crossings and thus the largest possible
statistical sample available from the data. Effects of varying the scalar isosurface value
were examined in Part 1.

Figures 8 and 9 present results for the scale-similarity properties of scalar isosurfaces
for the same two cases (R0703 and R0304) considered in figures 6 and 7. Each of these
figures represents ensemble statistics collected from the same nearly 10000 individual
two-dimensional intersections through the same typically thirteen 256$ spatial data
volumes examined in §4.2 (see table 3). However, these intersections are now of the
type in figures 1(a) and 2(a), and the volumes are of the type in figures 3(a) and 4(a).
The range of lengthscales examined again spans from the scalar diffusion scale λ

D
to

the viscous diffusion scale λν.
Figures 8(a) and 9(a) give the ensemble D

#
(ε) results for each of these two cases, and

figures 8(b) and 9(b) show the corresponding joint ©Dª and Q statistics for the same
intersections. The former should be compared with the corresponding results for
stochastically scale-similar fBm sets, as given for D3 1.5 in figure 5(a). The D

#
(ε)

results in figures 8(a) and 9(a) may appear to better asymptote to constant dimension
with decreasing scale size than did the corresponding results for the dissipation support
in figures 6(a) and 7(a). However, this can be determined more directly in the
corresponding joint ©Dª and Q statistics in figures 8(b) and 9(b) for these same
intersections. Those results should be compared with the probability contours from
fBm gauge sets for dimensions 1!D! 2 in figure 5(b). It is apparent that relatively
few of these two-dimensional intersections over this range of scales are as fractal as
fBm sets having the same record size, with most intersections giving Q values much
lower than corresponding fBm sets. As indicated in table 3, only 32.1% of the
intersections in case R0703 and 56.9% of the intersections in case R0304 produced
©Dª and Q values to the right of the 90% contour for fBm sets.

Whereas the one-dimensional intersections in Part 1 found the scalar isosurface
geometry over the inner range of scales to be at least approximately representable by
fBm sets with D

"
E 0.48, the present results suggest dimensions D

#
E 1.28 much lower

than the value D
#
¯ 1.48 that would be expected from the method of intersections. This

apparent failure of the method of intersections is consistent with the finding in §4.2,
and will also be seen in the three-dimensional results in §5. In §6.1 this will be seen
to result from a fundamentally non-fractal structure in the scalar isosurfaces at scales
near λ

D
.

5. Three-dimensional intersections

This section presents corresponding results for scale similarity in three-dimensional
intersections through scalar isosurface sets and scalar dissipation support sets for each
of the cases listed in table 1. Criteria based on stochastically self-similar three-
dimensional fBm gauge sets, constructed from superpositions of one-dimensional fBm
sets, are developed in §5.1, with results for geometric scale-similarity properties of the
dissipation support given in §5.2 and for the scaling properties of scalar isosurfaces
given in §5.3.
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F 10. (a) D(ε) results from fractional Brownian motion sets with D¯ 2.5 and (b) the
corresponding fractal criterion developed from analysis of many three-dimensional fractional
Brownian motion sets.

5.1. Three-dimensional calibrations

Three-dimensional calibrations were performed with fBm gauge sets having dimensions
2!D! 3 in increments of ∆D¯ 0.1. As an example, results for the D(ε) signatures of
20 individual realizations of three-dimensional (256$) fBm sets, each having D¯ 2.5,
are presented in figure 10(a). These should be compared with the corresponding results
for two-dimensional fBm sets in figure 5(a) and one-dimensional fBm sets in figure 5(b)
of Part 1. As in §4.1 and in Part 1, the standard deviation σ in D(ε) over Region 2 and
the average value ©D(ε)ª provide a means for assessing if a given three-dimensional set
displays scale similarity as fractal as an fBm set having the same average dimension
over the same range of scales. Results obtained from such calibrations for three-
dimensional fBm sets over the range of dimensions 2!D! 3 are given in table 4.

Joint ©Dª and Q statistics from the three-dimensional fBm sets above are presented
in figure 10(b), which can be compared with the corresponding results for two-
dimensional fBm sets in figure 5(b) and for one-dimensional fBm sets in figure 6(b) of
Part 1. The numerical values again denote the fraction of sets producing ©Dª and Q
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F 11. (a) D(ε) and (b) joint Q and ©D(ε)ª signatures obtained from analysis of the
dissipation support of the full three-dimensional data volumes of data set R0703.

D ©Dª σ(©Dª)

2.1 2.148 0.023
2.2 2.219 0.025
2.3 2.309 0.019
2.4 2.389 0.030
2.5 2.469 0.029
2.6 2.580 0.029
2.7 2.686 0.037
2.8 2.825 0.038
2.9 2.922 0.021

T 4. The D statistics generated from analysis of 180 three-dimensional fractional Brownian
motion sets with varying dimension.

values to the right of each contour. Note that, given the much higher information
content in these (256$) sets, the contour bounding 99% of all random percolation sets
in these three-dimensional calibrations lies well beyond the left-hand edge of the plot
in figure 10(b), corresponding to Q values below 10−#!, except very close to the limiting
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F 12. (a) D(ε) and (b) joint Q and ©D(ε)ª signatures obtained from analysis of the
dissipation support of the full three-dimensional data volumes of data set R0304.

value D¯ 3. Similarly, the contours bounding essentially all fractal sets are tightly
concentrated near the right-hand end of the plot, corresponding to comparatively large
Q values. Thus, even more so than for the two-dimensional intersections in §4, in
analysing three-dimensional intersections there is a totally unambiguous distinction
between fractal and random sets. Indeed unlike the corresponding results for one-
dimensional and two-dimensional fBm sets, in these three-dimensional analyses it is
effectively possible to define a single Q-value (log

"!
QE®3) to distinguish between

fractal and non-fractal scale similarity.

5.2. Scalar dissipation support intersections

Figures 11 and 12 show results from three-dimensional analyses of the same thirteen
256$ spatial data volumes from each of cases R0703 and R0304 for which two-
dimensional intersections were analysed in §4. Each of these volumes again spans the
range of scales between the scalar diffusion scale λ

D
and the viscous diffusion scale λν.

Figures 11(a) and 12(a) give the emsemble results for the dimension D
$
(ε) from the

three-dimensional intersections for these two cases, and should be compared with the
results for stochastically scale-similar fBm sets with D3 2±5 in figure 10(a). Consistent
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F 13. (a) D(ε) and (b) joint Q and ©D(ε)ª signatures obtained from analysis of the average
scalar isosurface of the full three-dimensional data volumes of data set R0703.

with what was found from two-dimensional intersections in §4, the local dimension
signature D

$
(ε) at lengthscales ε between the viscous and scalar diffusion scales in these

three-dimensional intersections appears very different from that in figure 10(a). The
corresponding joint ©Dª and Q values are given in figures 11(b) and 12(b) for these
same three-dimensional intersections, where the probability contours for stochastically
self-similar fBm sets from figure 10(b) are also shown for comparison. Owing to the
fact that no more than 13 volumes were analysed in each case, the resulting joint ©Dª
and Q values are shown as points rather than probability contours. Table 3 shows the
time variation in the D

$
and log

"!
Q values for each of the scalar dissipation volumes

analysed in each of the three cases considered, where a very clear variation with time
in the log

"!
Q values can be seen.

Note that only 4 of the 12 volumes (33%) from case R0703 in figure 11(b) show
scale similarity throughout the entire three-dimensional (256$) volume comparable
with the fBm gauge sets. This should be compared with the 49±4% and 74±7% values
obtained, respectively, from two-dimensional and one-dimensional intersections
through the volumes analysed from case R0703. Similarly, for case R0304, 10 out of
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F 14. (a) D(ε) and (b) joint Q and ©D(ε)ª signatures obtained from analysis of the average
scalar isosurface of the full three-dimensional data volumes of data set R0304.

13 intersections (77%) in figure 12(b) show scale similarity throughout the entire
(256$) volume consistent with fBm sets, compared with the 83±4% and 83±9% values
obtained, respectively, from two-dimensional and one-dimensional intersections. For
those volumes having log

"!
Q&®3 (i.e. showing fractal scale similarity), the resulting

average dimension in figures 11(b) and 12(b) is D
$
E 2±49, in relatively good agreement

with the value D
#
E 1±52 from the two-dimensional intersections in §4±2.

The pattern that is suggested by these results is one of a decreasing percentage of
intersections showing uniform scale similarity consistent with fBm sets as the
intersection dimension increases. The reasons for this will become fully evident in §6±1
below, but even at this stage it is apparent that this would be consistent with the
presence of non-fractal inclusions embedded in an otherwise fractal background
structure. The fraction of intersections that would pass through such inclusions, and
thus show interrupted fractal scale similarity, would increase as the intersection
dimension increases, leading to a decreasing percentage of intersections showing
uniform scale-similarity as the intersection dimension increases. This in turn would
lead to the observed decrease with intersection dimension in the fraction of intersections
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found to be fractal. Note that this would be consistent as well with the time variations
seen in the log

"!
Q values in table 3.

5.3. Scalar isosurface intersections

Figures 13 and 14 present corresponding results for scalar isosurfaces for the same
cases considered in §5±2 above and in §4. Figures 13(a) and 14(a) give ensemble D

$
(ε)

results for the scalar isosurface geometries from cases R0703 and R0304. These should
be compared with the D(ε) signature for stochastically scale-similar fBm sets, shown
for D3 2±5 in figure 10(a). For the same reasons as noted in §4.3, these results do not
appear to be consistent with the scale similarity embodied in fBm sets. Instead they
show an approach to D

$
(ε)U 2 as the scale εU 0, consistent with the expected cutoff

scale at λ
D
, below which scalar isosurfaces should appear as topologically simple

planar surfaces. However, even at scales well above λ
D
, the results in figures 13(a) and

14(a) do not show any consistency with fractal scale similarity.
The joint ©Dª and Q values for these same three-dimensional intersections are given

in table 3 and by the symbols in figures 13(b) and 14(b), along with the probability
contours for the fBm gauge sets from figure 10(b). As in §5.2, the joint ©Dª and Q
values are shown here as points rather than probability contours. Note that, in both
cases, none of the volumes produced Q values large enough to indicate scale similarity
throughout the entire three-dimensional (256$) volume consistent with 90% of all fBm
sets (log

"!
Q"®3). Indeed most of the points in figures 13(b) and 14(b) are well

beyond the left-hand edge of the plot, indicating manifestly non-fractal scaling. This
should be contrasted with the corresponding results in figures 11(b) and 12(b) for the
scalar dissipation support in the same volumes, which showed clear evidence for fractal
scale similarity in many of the volumes over the same range of length scales. Moreover,
from figures 13(b) and 14(b) the resulting average dimension gives D

$
E 2±17 for these

three-dimensional intersections through isoscalar surfaces, whereas the two-
dimensional intersections in §4.3 gave D

#
E 1±28 and the one-dimensional intersections

in Part 1 gave D
"
E 0±48. This failure of the relation D

n
¯D®(3®n) among

codimensions is a further indication for lack of uniform fractal scale similarity in the
scalar isosurface fields over this range of lengthscales.

This also establishes a clear trend with increasing intersection dimension, though one
that is different in important ways from that seen in §5.2 for the scalar dissipation
support geometry. For scalar isosurfaces, the one-dimensional intersections in Part 1
showed roughly 85% of 256-point intersections over the inner range of scales between
(λ

D
,T

D
) and (λν,Tν) to be as fractal as fBm sets having the same record length (though

for scales between (λ
D
,T

D
) and (δ,Tδ) only 2±6% of intersections appeared consistent

with fractal scale similarity). In contrast, the less ambiguous assessment in §4.3 based
on two-dimensional intersections over the inner range of scales between λ

D
and λν

showed only 56% of 256# intersections to be as fractal as fBm sets. The even more
definitive three-dimensional 256$ intersections over the same range of scales showed
that no scalar isosurface sets were as fractal as fBm sets. Given all of the above
evidence, it must be concluded that scalar isosurfaces do not display fractal scale
similarity over the inner range of scales, and instead show an approach to classical,
topologically simple, two-dimensional surfaces consistent with a cutoff near λ

D
.

6. Local scale similarity and non-fractal inclusions

Results in §§4 and 5 from two- and three-dimensional intersections through scalar
dissipation support sets over the inner range of scales gave strong evidence for
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stochastic fractal scale similarity. However, these same results also showed indications
of possible intermittent non-fractal regions within the measurement volume. Indirect
evidence for such regions was found in the time variations in table 3 of the fraction of
two- and three-dimensional intersections displaying uniform fractal scale-similarity,
and in the variation with intersection dimension n of the fraction of one-, two-, and
three-dimensional intersections found to show fractal scale-similarity, as well as in the
failure of the relation among codimensions D

n
from the method of intersections when

applied to simple average dimensions.
The notion of regions of non-fractal scaling in turbulent flows is not entirely new.

In chaotic flows, isolated regions of non-fractal scaling often associated with KAM
islands or tubes have been well-documented both experimentally and analytically
(Everson & Screenivasan 1992; Kusch & Ottino 1992; Ottino et al. 1992). Fluid in
these regions does not experience the same multiplicative stretching and folding that
operates on the majority of the fluid, and therefore lacks the fractal scaling found in
the remainder of the flow. Though similarities between such chaotic flows and
turbulent flows are currently tenuous at best, it is possible that structures similar to
such KAM regions might be present in turbulent flows. Recent work by Vassilicos &
Hunt (1991) has postulated the presence of power-law vortex roll-up regions which
produce the fractal signature in the scalar isosurface fields of turbulent flows measured
by Sreenivasan & Meneveau (1986) and Sreenivasan, Ramshankar & Meneveau (1989)
without actually being fractals. However, Everson & Sreenivasan (1992) contend that
these vortex roll-up regions obey logarithmic scaling instead of the power-law scaling
proposed by Vassilicos & Hunt, and thus do not affect the fractal structure of the scalar
isosurface fields.

6.1. Non-fractal inclusions

If non-fractal inclusions are present in these data, then intersections passing through
them would presumably have their fractal scale similarity interrupted, or at least
altered, and thus fail to meet the present objective criteria for fractal scaling. This
would explain the observed reduction with increasing intersection dimension n in the
percentage of intersections found to demonstrate fractal scaling. Note that if every
three-dimensional volume of scale L$ containing a sufficiently large inclusion (say of
scale l $) fails to show fractal scaling, then roughly 1®(l}L) of all two-dimensional
intersections through the same volumes would miss the inclusion and still give fractal
scaling, while 1®(l}L)# of all one-dimensional intersections would miss the inclusion
and give fractal scaling. Letting P

!
denote the fraction of all volumes free of such

inclusions, the resulting fraction P(n)
F

of all n-dimensional intersections that still show
fractal scaling would be given by

P(n)
F

¯P
!
­(1®P

!
) 91®0 l

L1
($−n): . (1)

Since P
!
3P($)

F
, the typical inclusion scale can then be estimated as

0 l

L1¯ 91®P(n)
F

1®P($)
F

:"/($−n)

. (2)

Using values of P(n)
F

from §4.2, §5.2, and from Part 1 (for the 90% contour in the joint
©Dª and Q results given there), as well as the values of L for each case (see figures 2
and 3), produces the inclusion scale estimates (l}L) from (2) given in table 5. Note that
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F 15. Fractal criterion developed for the 64$ local scale similarity analysis.

Fractal (%)

Data One-dimensional Two-dimensional Three-dimensional
volumes intersections intersections intersections [l}λν]

",$
[l}λν]

#,$

R0806 76.6 59.8 38.5 0.23 0.25
R0703 74.7 49.4 33.3 0.27 0.33
R0304 83.9 83.4 76.9 0.47 0.41

T 5. Summary of the fraction of intersections through the dissipation support that were found
to be fractal. Included are estimates of the size of the non-fractal inclusions obtained from these
data.

within each case the values obtained are rather consistent. The variations between cases
may not be surprising in view of the relatively short time span of each case (see table
3). Nevertheless, all the cases considered suggest values for (l}λν) in the range from "

%
to "

#
. While these estimates must be viewed as extremely crude, the agreement among

them is strong enough to lend some support to the underlying physical hypothesis that
the observed variations in P(n)

F
with intersection dimension n and with time may be due

to such non-fractal inclusions.

6.2. Three-dimensional (64$) calibrations

To investigate the possible presence of such non-fractal inclusions in these data, the
same fractal assessment criteria used throughout this study (see §3) were extended to
smaller (64$) three-dimensional volumes to allow point-by-point evaluation of the local
goodness-of-fit parameter Q and the dimension D within the interior of each of the
three-dimensional (256$) spatial data volumes analysed in §§4 and 5. The extension to
such smaller three-dimensional volumes only required recalibrating the joint ©Dª and
Q statistics using 64$ fBm sets in precisely the same way as was done for 256$ volumes
in §5.1. In this case, scale similarity is evaluated over the range of lengthscales from
0±43λ

D
to 1±7λ

D
. The results of this procedure are shown in figure 15, which is

analogous to the result for 256$ fBm sets presented in figure 10(b). Note that the
cumulative probability contours in figure 15 are nearly as compact as those for the
corresponding 256$ calibrations volumes in figure 10(b), except at dimensions very
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F 16. (a) Local (64$) scale-similarity results from a three-dimensional fractional Brownian
motion set with a non-fractal random spherical insert. The non-fractal insert produces extremely low
Q values in (b) but does not produce large variations in the D results in (c).

close to 2. This allows definition of a threshold Q value at log
"!

Q¯®3 effectively
separating fractal and non-fractal sets, and containing 90% of all the 64$ fBm gauge
sets.

Figure 16 demonstrates the ability of this local scale-similarity criterion to
discriminate between locally fractal and non-fractal regions. Figure 16(a) shows a
three-dimensional 256$ stochastically fractal fBm level-crossing set with dimension
D3 2±5, constructed with a spherical inclusion centred at the upper right-hand corner
within which non-fractal random percolation scaling applies. Analysing 64$ sub-
volumes contained within the original 256$ set using this criterion produces the local
values of the fractal goodness-of-fit parameter Q(x, t) shown in figure 16(b) and the
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F 17. (a) Local (64$) scale-similarity results for the dissipation support in the three-dimensional
data volume R0304037, which was found to be fractal in §5.2. Only small regions of slightly non-
fractal Q values can be seen in (b), while the D values in (c) remain relatively constant throughout
the data volume.

dimension values D
$
(x, t) in figure 16(c). It is readily apparent that the technique

unequivocally identifies the non-fractal spherical inclusion by the exceedingly low Q
values at the upper right-hand corner of the cube. The corresponding dimension D

$
values vary somewhat throughout the volume owing to the stochastic nature of the
original fractal set, and as usual are slightly lower than the true dimension D¯ 2±5. The
variations in D

$
values in figure 16(c) set the standard for declaring the sets in §§6.3 and

6.5 to have a single true dimension. More importantly, the Q values in both the fractal
and non-fractal regions in figure 16(b) indicate the threshold for identifying non-fractal
inclusions in the sets in §§6.3–6.5.
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F 18. (a) Local (64$) scale-similarity results for the dissipation support in the three-dimensional
data volume R0703054, which was found to be fractal in §5.2. Only small regions of slightly non-
fractal Q values can be seen in (b), while the D values in (c) remain relatively constant throughout
the data volume.

6.3. Scalar dissipation support intersections

Based on the success of this local scale-similarity criterion in correctly identifying non-
fractal inclusions in a variety of test cases like that in figure 16, this approach was applied
to all the volumes analysed in §§4 and 5 to investigate the possible presence of such
non-fractal inclusions in these data. Figures 17–19 show results from the local (64$)
scale-similarity analysis for three typical data volumes that were found to be fractal
from the full 256$ analyses in §5.2 and figures 11 and 12. In each figure, part (a) shows
the corresponding three-dimensional (256$) scalar dissipation field, part (b) the local
fractal goodness-of-fit parameter Q(x, t), and part (c) the local dimension values
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F 19. (a) Local (64$) scale-similarity results for the dissipation support in the three-dimensional
data volume R0304039, which was found to be fractal in §5.2. Only small regions of significantly
non-fractal Q values can be seen in (b), while the D values in (c) remain relatively constant
throughout the data volume.

D
$
(x, t). Note that, throughout most of the volume, figures 17 and 18 show Q values

near or exceeding the 10−$ threshold for fractal scaling based on the calibration results
in figure 15. Moreover, based on the standard in figure 16(c), these volumes also show
essentially constant dimensions throughout, with the dimension ©D

$
ªE 2±71 and 2±66

in figures 17 and 18, respectively. In such volumes, the relation among codimensions
D

n
appears to be relatively well satisfied. By comparison, figure 19 shows a volume

with somewhat larger departures from strict uniform fractal scale-similarity, though it
was still found to be fractal in the full 256$ analyses, with log

"!
Q¯®0±60.

Nevertheless, figure 19(b) shows a small region near the top surface that locally
demonstrates significantly non-fractal scale similarity. Putting this relatively small
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F 20. (a) Local (64$) scale-similarity results for the dissipation support in the three-dimensional
data volume R0703039, which was found to be non-fractal in §5.2. Large regions of significantly non-
fractal Q values can be seen in (b).

region of non-fractal scaling aside for the moment, the departures from essentially
uniform dimension D

$
in figure 19(c) appear to be simply due to voids in the

dissipation field over scales that are relatively large in comparison with the 64$ scale
over which the analysis extends. The dimension estimate D

$
obtained on nearly empty

boxes is naturally biased toward lower values.
Figures 20–22 show corresponding results for three typical data volumes that were

found to be non-fractal in the full 256$ analyses. In each case, the primary
distinguishing feature is the presence of one or more relatively large inclusions within
which the scaling is clearly non-fractal, as evidenced by the regions with exceedingly
low Q values in part (b) of each of these figures. In many cases, these non-fractal
inclusions appear to be closely associated with regions where the scalar dissipation
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F 21. (a) Local (64$) scale-similarity results for the dissipation support in the three-dimensional
data volume R0703049, which was found to be non-fractal in §5.2. Large regions of significantly
non-fractal Q values can be seen in (b), which correspond to regions of highly parallel dissipation
layers.

layers are tightly packed into nearly parallel structures. The topology of these
inclusions varies widely, from roughly spherical to nearly slab-like, as in figure 22, and
some cases appear to show more than one inclusion, as in figure 20. However, in each
case the characteristic lengthscale of these inclusions is of the order of the viscous
diffusion scale λν. This is in at least rough agreement with the crude estimates obtained
in §6.1 and table 5.

6.4. Non-fractal inclusion scale

Given the clear evidence in §6.3 for non-fractal inclusions in these data, in this section
we determine their characteristic lengthscale based on an equivalent spherical model
for the inclusions. A natural choice for such a characteristic scale might appear to be
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F 22. (a) Local (64$) scale-similarity results for the dissipation support in the three-dimensional
data volume R0703044, which was found to be non-fractal in §5.2. Large regions of significantly
non-fractal Q values can be seen in (b), which correspond to regions of highly parallel dissipation
layers.

the classical Sauter mean diameter, defined from the radius of a sphere having the same
volume to surface area ratio as the inclusions. For a single spherical inclusion, this
ratio is

Volume

Surface area
3

%

$
πr$

4πr#
¯ "

$
r, (3)

and thus the Sauter mean radius R
SMD

for an ensemble of m spherical inclusions
effectively gives

R
SMD

¯ 3
m

i="

r$
i53m

i="

r#
i
. (4)
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F 23. (a) Local (64$) scale-similarity results for the dissipation support in the three-dimensional
data volume R0304037, which was found to be non-fractal in §5.2. While the Q values in (b) appear
to suggest scale similarity, the D values in (c) lie in a narrow range near D¯ 2, indicating that the
scalar isosurfaces over this range of scales are non-fractal and instead correspond to topologically
simple surfaces.

However, since most inclusions like those in figures 20–22 lie only partly inside the
measurement volume, neither their full volume nor surface area can be directly
evaluated. For this reason, a closely related lengthscale is instead defined from a
differential surface area ratio as the radius of a sphere having the same rate of change
of surface area with radius as the inclusions. This can be readily evaluated so long as
any significant part of the inclusion intersects the measurement volume. For a single
spherical inclusion, this ratio is

lim
εU

!

Surface area (r­ε)

Surface area (r)
3

4π(r­ε)#

4πr#
U 1­

2ε

r
, (5)
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F 24. (a) Local (64$) scale-similarity results for the dissipation support in the three-dimensional
data volume R0304039, which was found to be non-fractal in §5.2. Again the Q values in (b) appear
to suggest scale similarity, but the D values in (c) lie in a narrow range near D¯ 2, indicating that
scalar isosurfaces over this range of scales are non-fractal and instead correspond to topologically
simple surfaces.

and thus the equivalent radius R
S

of an ensemble of m spherical inclusions effectively
gives

R
S
¯ 3

m

i="

r#
i53m

i="

r
i
, (6)

which may be compared with (4). This definition for R
S

is equivalent to a concept
called the ‘surface diameter ’ D

"#
, typically encountered in adsorption problems, which

comes from the same family of diameters in which the Sauter mean diameter is D
#$

as
is apparent from (4) and (6).
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Here R
S

is determined from Q(x, t) fields of the type in parts (b) of each of figures
17–22 via (5) from the surface area ratio of two closely spaced iso-Q surfaces near the
threshold value log

"!
QE®3 separating locally fractal and non-fractal scalings in

figure 15. Results obtained for each individual volume vary rather widely from volume
to volume, and even among the three cases. Average values obtained for the three cases
give the inclusion radius R

S
}λν E 0±62, 0±23 and 0±65, giving a mean characteristic

diameter 2R
S

of roughly one-half to one-and-a-half viscous diffusion scales λν. This is
somewhat larger than the crude estimate in §6.1. However, neither the cubic inclusion
model on which those esimates were based nor the spherical model used here are very
good representations of the inclusion topology, as can be seen in figures 20–22.

These estimates of the characteristic inclusion lengthscale being of the order of the
viscous diffusion scale λν appear consistent with the timescale on which variations in
Q are evident in table 3. Indeed the timescale on which Q varies appears comparable
to the viscous diffusion scale advection time λν}u. These variations are thus presumably
due to inclusions advecting through the measurement volume. Collectively, these
results for the scalar dissipation support appear to show that much of the variation
with both intersection dimension n and with time in the fraction of intersections found
to be fractal are due to the presence of non-fractal inclusions. Although the shape of
these inclusions varies widely, their characteristic size is of the order of the viscous
diffusion scale λν. Since these non-fractal inclusions generally coincide with regions
where many neighbouring scalar dissipation layers have been brought into a nearly
parallel sheet-like arrangement by the underlying strain field (e.g. figures 20–22), and
since their characteristic lengthscale is of the order of the viscous diffusion scale λν, it
appears that they may be spatial manifestations of the expected diffusive cutoff process.

6.5. Scalar isosurface intersections

Given the success in reconciling the results obtained for the scale similarity properties
of the scalar dissipation support of §§4 and 5 and in Part 1 on the basis of the non-
fractal inclusions in §§6.1, 6.3 and 6.4, it is natural to inquire if these inclusions can also
account for the somewhat different results found for the geometry of scalar isosurfaces.
Accordingly, figures 23 and 24 show typical results obtained when the local scale-
similarity analyses of §6.2 are applied to scalar isosurfaces. These figures are analogous
to figures 17–22 for the scalar dissipation support geometry, however, it is apparent
that the conclusions that must be drawn from them are fundamentally different.

The Q(x, t) fields in part (b) of figures 23 and 24 show strong scale similarity
throughout the entire volume over the range of lengthscales covered in these smaller
64$ subvolumes. However, the local dimension values D

$
(x, t) in part (c) of these figures

show that the dimension associated with this smaller range of lengthscales in the scalar
isosurfaces is simply D

$
3 2, indicating non-fractal structure corresponding to locally

sheet-like geometries. This is quite different from the corresponding results for the
dissipation support in figures 17–22, which showed fractal scale similarity even at these
lengthscales. Note that the volume presented in figure 23 is the same as that in figure
17, yet the dissipation support field shows clearly uniform fractal scaling, whereas the
corresponding scalar isosurfaces show only the trivial cutoff to D¯ 2 at these scales.
When these results are viewed together with those obtained at larger scales in §§4 and
5 and in Part 1, it must be concluded that strict fractal scale similarity is inapplicable
to scalar isosurface geometries over both the inner range of scales, between (λ

D
,T

D
) and

(λν,Tν), and the outer range of scales, between (λν,Tν) and (δ,Tδ).



Fractal scale similarity in turbulent flows. Part 2 123

7. Discussion and conclusions

This study has extended the objective statistical techniques developed for scale
similarity analyses in Part 1 and has applied them to examine the applicability of
uniform fractal scale similarity in two-dimensional (256#) and three-dimensional (256$)
intersections with fully resolved experimental data for the geometry of scalar
isosurfaces and the dissipation support in a turbulent flow. The present study spans the
inner range of scales from the scalar diffusion lengthscale λ

D
to the viscous diffusion

scale λν.
For the spatial support geometry on which the scalar dissipation field ¡ζ[¡ζ(x, t)

is concentrated over this inner range of scales, Part 1 found 78% of one-dimensional
intersections to be as fractal as 90% of one-dimensional fBm sets with the same record
length. The present study finds that typically 64% of two-dimensional intersections
and 50% of three-dimensional intersections display uniform scale similarity as fractal
as 90% of stochastically self-similar fBm sets having the same dimension and record
length (see tables 3 and 5). None of these intersections showed scaling as random as
a corresponding random set. This decrease with increasing intersection dimension n in
the percentage of intersections found to be fractal is consistent with the presence of
non-fractal inclusions in an otherwise fractal background structure, as discussed in
§6.1. Indeed, §6.3 used local scale similarity analyses based on three-dimensional (64$)
spatial intersections to show directly the presence of such non-fractal inclusions in
the Q(x, t) fields (see figures 17b–22b). Intersections passing through these inclusions
have their scale similarity interrupted and thus do not meet the objective criteria for
fractal scaling. With increasing intersection dimension n, an increasing percentage of
intersections contains a significant part of one or more of these inclusions. The shapes
of these inclusions vary widely, but their characteristic scale is of the order of λν, as is
evident in figures 20–22, and consistent with the measured percentages in table 5.
Moreover, the inclusions often coincide in the dissipation fields with regions where the
dissipation layers have been brought into a largely parallel arrangement of sheets by
the underlying flow field (see figures 17a–22a), suggesting that they are spatial
manifestations of the expected scaling cutoff near the diffusive scale λν.

Consistent with this, the relation D
n
¯D®(3®n) among codimensions holds only

for those intersections that are essentially free of such inclusions. It is only as QU 1 that
©D

#
ª in figures 6 and 7 approaches the value consistent with this relation from the

result ©D
"
ªE 0±66 obtained in Part 1. When applied to simple average dimensions over

both fractal and non-fractal intersections, the relation among codimensions fails.
Similar analyses of the spatial geometry of scalar isosurfaces in the conserved scalar

field ζ(x, t) over the same range of scales show rather different results. Whereas
typically 56% of two-dimensional intersections with the mean scalar isosurface showed
scale similarity consistent with 90% of fBm gauge sets having the same dimension and
record length (see figures 8 and 9 and table 3), none of the corresponding three-
dimensional intersections were consistent with uniform fractal scale similarity (see
figures 13 and 14 and table 3). This reduction with increasing intersection dimension
cannot be explained by the presence of non-fractal inclusions found in the dissipation
support fields. Instead, the same local scale-similarity analyses demonstrated that the
entire scalar isosurface geometry over this range of scales shows only the trivial
geometric cutoff to D

$
3 2. Consistent with this, the relation among codimensions fails

entirely for the scalar isosurface results, as can be seen from table 3.
When the present results are combined with those obtained in Part 1, it must be

concluded that the geometry of scalar isosurfaces does not appear consistent with the
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concept of uniform fractal scale similarity over any range of scales. In contrast, the
geometry of the dissipation support from precisely the same data clearly shows
uniform fractal scale similarity, even by the present strictly objective criteria. The
apparent fundamentally different scale-similarity properties of the conserved scalar
field ζ(x, t) and the scalar dissipation rate field ¡ζ[¡ζ(x, t) may result in part from the
differing abilities of these two fields to retain information. Since the scalar isosurface
geometry depends on the entire evolution of the conserved scalar field since its initial
conditions there is, in this sense, no loss of memory in the scalar field. However, in the
scalar dissipation field, as scalar gradient layers merge, their dissipation decreases until
it eventually drops below the threshold value and they disappear from the support set.
This is evident from the diffusional cancellation term in the dissipation transport
equation (e.g. Southerland et al. 1991). The information carried by these layers
concerning past history of the underlying mixing dynamics is thus lost in the scalar
dissipation field. In contrast, the scalar isosurface geometries reflect all the past history,
including possible variations in dimension that might preclude applicability of any
simple uniform fractal scale-similarity with a single dimension.

As in Part 1 the present finding of fractal scale similarity in the scalar dissipation
support appears consistent with the result of Prasad et al. (1988). However, the lack of
fractal scale similarity in the isoscalar surfaces geometry disagrees with the findings of
Sreenivasan & Meneveau (1986), Prasad & Sreenivasan (1990a, b), Sreenivasan et al.
(1989) and Sreenivasan (1991). Several possible reasons for this were discussed in Part
1. Those that are relevant to the present study include the fact that the results are based
on strict tests for uniform fractal scale similarity over the entire range of scales
examined, and the possible effects of the scaling break anticipated across the viscous
diffusion scale λν. However, the present results convincingly show uniform fractal
scale similarity in the dissipation support field over the same range of scales, and when
viewed together with the results from Part 1 show no apparent change in dimension
across λν. A second possible reason for the different finding in this study is the potential
influence of the inner cutoff scale. Clear evidence of this inner cutoff was found in the
scalar isosurface fields in §6.5, however, this in no way interfered with the ability to
assess the scale similarity over this range of scales. Moreover, on the same range of
scales, the dissipation support geometry in the present study clearly showed fractal
scale-similarity, and further was even able to convincingly identify with the
manifestations of this inner cutoff process via the localized inclusions found in §6.3 and
figures 17–22. It is also possible that the present Reλ values may not be sufficiently
large. However, these Reynolds numbers are not very different from other studies, and,
more importantly, the clear evidence for uniform fractal scale similarity in the
dissipation support fields from precisely the same data suggests that this is not likely
to be the case. It is concluded that the different results concerning the applicability of
fractal scale similarity to scalar isosurfaces are due to the strictly objective statistical
criterion used here for judging data records to be as fractal as known fractal gauge sets
having the same dimension and record lengths.

The scalar dissipation support geometry in turbulent shear flows, over the range of
record lengths and the range of lengthscales and timescales accessible in this study and
in Part 1, thus appears to be representable by stochastic fractal scale similarity of the
type embodied in fBm sets. However, the scalar isosurface geometry over the same
range of scales does not appear to follow fractal scale similarity.

The three- and four-dimensional scalar field data used in this study were obtained
at Michigan as part of the doctoral dissertation work of Dr Kenneth B. Southerland,
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under support from the Air Force Office of Scientific Research (AFOSR) Airbreathing
Combustion program under Grant No. AFOSR-89-0541 and the Turbulence Structure
and Control program under Grant No. F49620-92-J-0025.
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